103 research outputs found

    Superheavy Dark Matter with Discrete Gauge Symmetries

    Get PDF
    We show that there are discrete gauge symmetries protect naturally heavy X particles from decaying into the ordinary light particles in the supersymmetric standard model. This makes the proposal very attractive that the superheavy X particles constitute a part of the dark matter in the present universe. It is more interesting that there are a class of discrete gauge symmetries which naturally accommodate a long-lived unstable X particle. We find that in some discrete Z_{10} models, for example, a superheavy X particle has lifetime \tau_X \simeq 10^{11}-10^{26} years for its mass M_X \simeq 10^{13}-10^{14} GeV. This long lifetime is guaranteed by the absence of lower dimensional operators (of light particles) couple to the X. We briefly discuss a possible explanation for the recently observed ultra-high-energy cosmic ray events by the decay of this unstable X particle.Comment: 9 pages, Late

    Gauging Away the Strong CP Problem

    Full text link
    We propose a new solution to the strong-CP problem. It involves the existence of an unbroken gauged U(1)XU(1)_X symmetry whose gauge boson gets a Stuckelberg mass term by combining with a pseudoscalar field η(x)\eta (x). The latter has axion-like couplings to FQCDFQCDF_{QCD}\wedge F_{QCD} so that the theta parameter may be gauged away by a U(1)XU(1)_X gauge transformation. This system leads to mixed gauge anomalies and we argue that they are cancelled by the addition of an appropriate Wess-Zumino term, so that no SM fermions need to be charged under U(1)XU(1)_X. We discuss scenarios in which the above set of fields and couplings appear. The mechanism is quite generic, but a natural possibility is that the the U(1)XU(1)_X symmetry arises from bulk gauge bosons in theories with extra dimensions or string models. We show that in certain D-brane Type-II string models (with antisymmetric tensor field strength fluxes) higher dimensional Chern-Simons couplings give rise to the required D=4 Wess-Zumino terms upon compactification. In one of the possible string realizations of the mechanism the U(1)XU(1)_X gauge boson comes from the Kaluza-Klein reduction of the eleven-dimensional metric in M-theory.Comment: 21 pages, latex, one eps figure; v2 improved discussio

    Strongly Coupled Grand Unification in Higher Dimensions

    Full text link
    We consider the scenario where all the couplings in the theory are strong at the cut-off scale, in the context of higher dimensional grand unified field theories where the unified gauge symmetry is broken by an orbifold compactification. In this scenario, the non-calculable correction to gauge unification from unknown ultraviolet physics is naturally suppressed by the large volume of the extra dimension, and the threshold correction is dominated by a calculable contribution from Kaluza-Klein towers that gives the values for \sin^2\theta_w and \alpha_s in good agreement with low-energy data. The threshold correction is reliably estimated despite the fact that the theory is strongly coupled at the cut-off scale. A realistic 5d supersymmetric SU(5) model is presented as an example, where rapid d=6 proton decay is avoided by putting the first generation matter in the 5d bulk.Comment: 17 pages, latex, to appear in Phys. Rev.

    Affleck-Dine baryogenesis in the local domain

    Get PDF
    For Affleck-Dine baryogenesis to proceed, there must have been two types of phase transitions. One is the destabilized-stabilized phase transition of the flat direction, which is in general induced by the Hubble parameter. The other is the phase transition related to the A-term, which induces the misalignment of the relative phase of the flat direction. In the conventional Affleck-Dine baryogenesis they are supposed to start almost simultaneously. Of course these phase transitions can take place separately, but the latter must not be later than the former because the phase transition of the A-term can not produce any baryon number when there is no condensate of the relative charge. In this paper we try to construct models where the original idea of Affleck-Dine baryogenesis is realized in a different way. We show examples in which the local domain of the false vacuum with the required condensate is formed after inflation and collapses in a safe way so that the domain wall problem is avoided. We also show examples where the phase transition of the A-term starts before the decay of the condensate. As in the conventional Affleck-Dine mechanism, the phase transition of the A-term produces baryon number in the local domain of the condensate. We construct scenarios where our mechanism produces sufficient baryon asymmetry of the Universe.Comment: 18pages, latex2e, to appear in PR

    Family Unification in Five and Six Dimensions

    Get PDF
    In family unification models, all three families of quarks and leptons are grouped together into an irreducible representation of a simple gauge group, thus unifying the Standard Model gauge symmetries and a gauged family symmetry. Large orthogonal groups, and the exceptional groups E7E_7 and E8E_8 have been much studied for family unification. The main theoretical difficulty of family unification is the existence of mirror families at the weak scale. It is shown here that family unification without mirror families can be realized in simple five-dimensional and six-dimensional orbifold models similar to those recently proposed for SU(5) and SO(10) grand unification. It is noted that a family unification group that survived to near the weak scale and whose coupling extrapolated to high scales unified with those of the Standard model would be evidence accessible in principle at low energy of the existence of small (Planckian or GUT-scale) extra dimensions.Comment: 13 pages, 2 figures, minor corrections, references adde

    Gauge Coupling Unification from Unified Theories in Higher Dimensions

    Get PDF
    Higher dimensional grand unified theories, with gauge symmetry breaking by orbifold compactification, possess SU(5) breaking at fixed points, and do not automatically lead to tree-level gauge coupling unification. A new framework is introduced that guarantees precise unification -- even the leading loop threshold corrections are predicted, although they are model dependent. Precise agreement with the experimental result, \alpha_s^{exp} = 0.117 \pm 0.002, occurs only for a unique theory, and gives \alpha_s^{KK} = 0.118 \pm 0.004 \pm 0.003. Remarkably, this unique theory is also the simplest, with SU(5) gauge interactions and two Higgs hypermultiplets propagating in a single extra dimension. This result is more successful and precise than that obtained from conventional supersymmetric grand unification, \alpha_s^{SGUT} = 0.130 \pm 0.004 \pm \Delta_{SGUT}. There is a simultaneous solution to the three outstanding problems of 4D supersymmetric grand unified theories: a large mass splitting between Higgs doublets and their color triplet partners is forced, proton decay via dimension five operators is automatically forbidden, and the absence of fermion mass relations amongst light quarks and leptons is guaranteed, while preserving the successful m_b/m_\tau relation. The theory necessarily has a strongly coupled top quark located on a fixed point and part of the lightest generation propagating in the bulk. The string and compactification scales are determined to be around 10^{17} GeV and 10^{15} GeV, respectively.Comment: 29 pages, LaTe

    The Supersymmetric Standard Models with Decay and Stable Dark Matters

    Get PDF
    We propose two supersymmetric Standard Models (SMs) with decaying and stable dark matter (DM) particles. To explain the SM fermion masses and mixings and have a heavy decay DM particle S, we consider the Froggatt-Nielsen mechanism by introducing an anomalous U(1)_X gauge symmetry. Around the string scale, the U(1)_X gauge symmetry is broken down to a Z_2 symmetry under which S is odd while all the SM particles are even. S obtains a vacuum expectation value around the TeV scale, and then it can three-body decay dominantly to the second/third family of the SM leptons in Model I and to the first family of the SM leptons in Model II. Choosing a benchmark point in the constrained minimal supersymmetric SM with exact R parity, we show that the lightest neutralino DM is consistent with the CDMS II experiment. Considering S three-body decay and choosing suitable parameters, we show that the PAMELA and Fermi-LAT experiments and the PAMELA and ATIC experiments can be explained in Model I and Model II, respectively.Comment: RevTex4, 26 pages, 6 figures, references added, version to appear in EPJ

    Stringy Instantons and Cascading Quivers

    Get PDF
    D-brane instantons can perturb the quantum field theories on space-time filling D-branes by interesting operators. In some cases, these D-brane instantons are novel "stringy" effects (not interpretable directly as instanton effects in the low-energy quantum field theory), while in others the D-brane instantons can be directly interpreted as field theory effects. In this note, we describe a situation where both perspectives are available, by studying stringy instantons in quivers which arise at simple Calabi-Yau singularities. We show that a stringy instanton which wraps an unoccupied node of the quiver, and gives rise to a non-perturbative mass in the space-time field theory, can be reinterpreted as a conventional gauge theory effect by going up in an appropriate renormalization group cascade. Interestingly, in the cascade, the contribution of the stringy instanton does not come from gauge theory instantons but from strong coupling dynamics.Comment: 17 pages, 6 figures, harvma

    Bounds on Four-Fermion Contact Interactions Induced by String Resonances

    Full text link
    Based on tree-level open-string scattering amplitudes in the low string-scale scenario, we derive the massless fermion scattering amplitudes. The amplitudes are required to reproduce those of the Standard Model at tree level in the low energy limit. We then obtain four-fermion contact interactions by expanding in inverse powers of the string scale and explore the constraints on the string scale from low energy data. The Chan-Paton factors and the string scale are treated as free parameters. We find that data from the neutral and charged current processes at HERA, Drell-Yan process at the Tevatron, and from LEP-II put lower bounds on the string scale M_S >= 0.9-1.3 TeV for typical values of the Chan-Paton factors, which are comparable to Tevatron bounds on Z' and W' masses.Comment: 13 pages, 1 ps figure, version to appear in PR

    Long Lived Superheavy Dark Matter with Discrete Gauge Symmetries

    Get PDF
    The recently observed ultra-high energy (UHE) cosmic rays beyond the Greisen-Zatsepin-Kuzmin bound can be explained by the decays of some superheavy XX particles forming a part of dark matter in our universe. We consider various discrete gauge symmetries ZN{\bf Z}_N to ensure the required long lifetime (τX10101022years\tau_X \simeq 10^{10}-10^{22} years) of the XX particle to explain the UHE cosmic rays in the minimal supersymmetric standard model (MSSM) with massive Majorana neutrinos. We show that there is no anomaly-free discrete gauge symmetry to make the lifetime of the XX particle sufficiently long in the MSSM with the XX particle. We find, however, possible solutions to this problem especially by enlarging the particle contents in the MSSM. We show a number of solutions introducing an extra pair of singlets YY and Yˉ\bar{Y} which have fractional ZN{\bf Z}_N (N=2,3) charges. The present experimental constraints on the XX particle are briefly discussed.Comment: 27 pages, Late
    corecore